- Curtis, M. D. & Shiu, K.-B. (1985). Inorg. Chem. 24, 1213-1218.
- Gamble, A. S. & Boncella, J. M. (1993). Organometallics, 12, 2814– 2819.
- Lawrence, F, (1986), Chem. Rev. 86, 17-33.
- Nugent, W. A. & Mayer, J. M. (1988). In Metal-Ligand Multiple Bonds. New York: Wiley Interscience.
- Schrock, R. R. (1986). J. Organomet. Chem. 300, 249-262.
- Schrock, R. R., Murdzek, J. S., Bazan, G. C., Robbins, J., DiMare, M. & O'Regan, M. (1990). J. Am. Chem. Soc. 112, 3875–3886.
- Sheldrick, G. M. (1976). SHELX76. Program for Crystal Structure Determination. Univ. of Cambridge, England.
- Sheldrick, G. M. (1990). SHELXTL-Plus. Version 4.21/V. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Trofimenko, S. (1971). Acc. Chem. Res. 4, 17-22.
- Vaughan, W. M., Abboud, K. A. & Boncella, J. M. (1994). J. Organomet. Chem. In the press.
- Vaughan, W. M., Abboud, K. A. & Boncella, J. M. (1995). In preparation.

Acta Cryst. (1995). C51, 1078-1080

trans-Dichlorooxo(2-propoxido)bis-(triphenylphosphine)rhenium(V)

Sonja Abram, Ulrich Abram,* Ernesto Schulz-Lang and Joachim Strähle

University of Tübingen, Institute of Inorganic Chemistry, Auf der Morgenstelle 18, D-72076 Tübingen, Germany

(Received 22 September 1994; accepted 17 November 1994)

Abstract

The title compound crystallizes with discrete [ReOCl₂- $(C_3H_7O)(C_{18}H_{15}P)_2$] units. The coordination sphere of the metal atom is approximately octahedral with the bulky phosphine ligands *trans* with respect to each other. The O=Re-O unit is nearly linear with an angle of 174.25 (9)°. Both Re-Cl bond lengths, as well as both Re-P lengths, are equal within their standard deviations.

Comment

[ReOX₃(Ph₃P)₂] complexes are frequently used as precursors for the synthesis of new rhenium(V)–oxo complexes. The structure of the chloro complex has recently been reported (Lebuis & Beauchamp, 1993). The chloro ligand *trans* to the oxo ligand is only weakly coordinated because of the strong structural *trans* influence of the π -donating oxo ligand and can easily be replaced.

In the course of our studies of the coordination behaviour of tellurium-containing organic ligands, we attempted the reaction of $[ReOCl_3(Ph_3P)_2]$ with bis(2,4,6triphenylphenyl)ditelluride. We could not isolate a rhenium species with Re—Te bonds. However, large violet blocks of $[ReOCl_2(C_3H_7O)(Ph_3P)_2]$, (I), were obtained after attempted recrystallization of the brown crude product from $CH_2Cl_2/2$ -propanol solution.

The coordination sphere of the Re atom is approximately octahedral (Fig. 1). Deviations from idealized geometry are found for the O(1)-Re-P angles of 86.7(1) and $87.5(1)^\circ$. These values are somewhat smaller than those obtained for the related complexes $[ReOX_2(OEt)(Ph_3P)_2]$ (X = Cl, Br) (Graziani, Casellato, Rossi & Marchi, 1985; Lebuis, Roux & Beauchamp, 1993; Lebuis & Beauchamp, 1993), which range between 89.0(1) and 91.55(3)°. The differences can be explained by the requirements of the more bulky 2propoxido ligand trans to the oxo ligand. In contrast to the ethoxo ligands in $[ReOCl_2(OEt)(Ph_3P)_2]$ (Graziani, Casellato, Rossi & Marchi, 1985) and [ReOBr₂(OEt)(Ph₃P)₂] (Lebuis, Roux & Beauchamp, 1993; Lebuis & Beauchamp, 1993), no disorder could be detected for the alkoxo group in the title compound.

Fig. 1. ORTEPII (Johnson, 1976) plot of [ReOCl₂(C₃H₇O)(Ph₃P)₂] along with the atomic numbering scheme (displacement ellipsoids represent 40% probability).

The Re—O(1) bond distance of 1.698 (2) Å comes very close to the mean value for Re—O bonds in monooxo-rhenium(V) complexes (1.69 Å). In agreement with the situation in the comparable complexes [ReO(OR)X₂(Ph₃P)₂] (R = Et, Me; X = Cl, Br, I)

C C C C

from 25

2.3%

(Graziani, Casellato, Rossi & Marchi, 1985; Lebuis, Roux & Beauchamp, 1993; Lebuis & Beauchamp, 1993; Ciani, D'Alfonso, Romiti, Sironi & Freni, 1983), the Re—O(2) distance is remarkably short [1.890(2)Å], which may reflect some multiple-bond character, as discussed by Ciani, D'Alfonso, Romiti, Sironi & Freni (1983).

Experimental , ,

Crystal data	
[ReOCl ₂ (C ₃ H ₇ O)(C ₁₈ H ₁₅ P) ₂] $M_r = 856.73$ Triclinic $P\overline{1}$ a = 9.594 (5) Å b = 12.430 (5) Å c = 16.893 (9) Å $\alpha = 109.71$ (2)° $\beta = 99.13$ (3)° $\gamma = 105.90$ (3)° V = 1753 (2) Å ³ Z = 2 $D_x = 1.624$ Mg m ⁻³	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å Cell parameters from reflections $\theta = 8-14^{\circ}$ $\mu = 3.754 \text{ mm}^{-1}$ T = 213 (2) K Column $0.5 \times 0.25 \times 0.2 \text{ mm}$ Violet
Data collection	

Duna concenton	
Enraf-Nonius CAD-4	$R_{\rm int} = 0.0164$
diffractometer	$\theta_{\rm max} = 27^{\circ}$
$\omega/2\theta$ scans	$h = -12 \rightarrow 12$
Absorption correction:	$k = -15 \rightarrow 15$
empirical via ψ scan	$l = 1 \rightarrow 21$
$T_{\min} = 0.896, T_{\max} =$	3 standard reflections
0.999	monitored every 200
8360 measured reflections	reflections
7580 independent reflections	intensity decay: 2.3%
7115 observed reflections	
$[I \geq 2\sigma(I)]$	

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0282P)^2]$
R(F) = 0.0207	+ 0.8269P]
$wR(F^2) = 0.0509$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.108	$(\Delta/\sigma)_{\rm max} < 0.001$
7580 reflections	$\Delta \rho_{\rm max} = 0.685 \ {\rm e} \ {\rm \AA}^{-3}$
535 parameters	$\Delta \rho_{\rm min} = -0.638 \ {\rm e} \ {\rm \AA}^{-3}$
All H-atom parameters	Atomic scattering factors
refined	from International Tables
	for X-ray Crystallography
	(1974, Vol. IV)

Table	1. Fractional atomic coordinates and equivalent			
isotropic displacement parameters (Å ²)				

$$U_{\text{eq}} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_i^* \mathbf{a}_i \cdot \mathbf{a}_j$$

	x	у	Ζ	U_{eq}
Re	0.1676 (1)	0.2282 (1)	0.2465 (1)	0.021(1)
P(1)	0.0812(1)	0.3838 (1)	0.2092 (1)	0.023 (1)
P(2)	0.2258 (1)	0.0603(1)	0.2807(1)	0.023 (1)
Cl(1)	0.2112 (1)	0.1485 (1)	0.1053 (1)	0.028(1)
Cl(2)	0.1559 (1)	0.3231 (1)	0.3941 (1)	0.037(1)

O(1)	-0.0171 (2)	0.1389 (2)	0.2160(1)	0.029 (1)
O(2)	0.3708 (2)	0.3350 (2)	0.2917 (1)	0.031 (1)
C(1)	0.4842 (4)	0.4295 (3)	0.3682 (2)	0.053 (1)
C(2)	0.5797 (5)	0.3777 (4)	0.4101 (3)	0.074 (1)
C(3)	0.5682 (6)	0.5307 (4)	0.3490 (4)	0.094 (2)
C(11)	0.0809 (3)	0.5094 (2)	0.3034 (2)	0.028 (1)
C(12)	0.1845 (4)	0.6271 (3)	0.3320 (2)	0.038 (1)
C(13)	0.1876 (5)	0.7181 (3)	0.4085 (2)	0.052 (1)
C(14)	0.0890 (4)	0.6932 (4)	0.4567 (2)	0.051 (1)
C(15)	-0.0134 (4)	0.5771 (3)	0.4282 (2)	0.046 (1)
C(16)	-0.0171 (4)	0.4859 (3)	0.3531 (2)	0.037 (1)
C(21)	0.1843 (3)	0.4593 (2)	0.1499 (2)	0.027 (1)
C(22)	0.3245 (3)	0.4539 (3)	0.1440 (2)	0.035 (1)
C(23)	0.4057 (4)	0.5179(3)	0.1024 (2)	0.044 (1)
C(24)	0.3488 (4)	0.5870 (3)	0.0681 (2)	0.047 (1)
C(25)	0.2093 (4)	0.5918 (3)	0.0729 (2)	0.046 (1)
C(26)	0.1258 (4)	0.5283 (3)	0.1133 (2)	0.039 (1)
C(31)	-0.1128 (3)	0.3098 (2)	0.1393 (2)	0.027 (1)
C(32)	-0.1476 (3)	0.2010 (3)	0.0668 (2)	0.032 (1)
C(33)	-0.2926 (4)	0.1390 (3)	0.0126 (2)	0.038 (1)
C(34)	-0.4072 (3)	0.1815 (3)	0.0318 (2)	0.039 (1)
C(35)	-0.3748 (3)	0.2887 (3)	0.1029 (2)	0.040(1)
C(36)	-0.2277 (3)	0.3543 (3)	0.1561 (2)	0.034 (1)
C(41)	0.2543 (3)	0.0830 (2)	0.3952 (2)	0.028 (1)
C(42)	0.1365 (4)	0.0954 (3)	0.4326 (2)	0.036 (1)
C(43)	0.1526 (4)	0.1162 (3)	0.5196 (2)	0.045 (1)
C(44)	0.2838 (5)	0.1234 (4)	0.5701 (2)	0.053 (1)
C(45)	0.4008 (5)	0.1125 (4)	0.5349 (2)	0.054 (1)
C(46)	0.3881 (4)	0.0932 (3)	0.4475 (2)	0.039 (1)
C(51)	0.3851 (3)	0.0210 (2)	0.2504 (2)	0.027 (1)
C(52)	0.4955 (3)	0.1010 (3)	0.2330 (2)	0.034 (1)
C(53)	0.6210(4)	0.0731 (3)	0.2144 (2)	0.043 (1)
C(54)	0.6347 (4)	-0.0349 (3)	0.2125 (2)	0.044 (1)
C(55)	0.5232 (4)	-0.1168 (3)	0.2269 (2)	0.040(1)
C(56)	0.3977 (3)	-0.0899 (3)	0.2456 (2)	0.035 (1)
C(61)	0.0652 (3)	-0.0833 (2)	0.2236 (2)	0.027 (1)
C(62)	0.0155 (4)	-0.1603 (3)	0.2645 (2)	0.039(1)
C(63)	-0.1036 (4)	-0.2703 (3)	0.2185 (3)	0.049 (1)
C(64)	-0.1707 (4)	-0.3039 (3)	0.1316 (3)	0.049 (1)
C(65)	-0.1218 (4)	-0.2290 (3)	0.0899 (2)	0.045 (1)
C(66)	-0.0040(3)	-0.1182(3)	0.1360 (2)	0.035 (1)

Table 2. Selected geometric parameters (Å, °)

	-	-	
ReO(1)	1.698 (2)	Re—P(1)	2.5208 (11)
Re—O(2)	1.890 (2)	O(2)C(1)	1.436 (4)
Re—Cl(2)	2.4071 (14)	C(1)C(3)	1.463 (6)
Re—Cl(1)	2.4076 (13)	C(1)C(2)	1.476 (6)
Re—P(2)	2.5201 (11)		
O(1)ReO(2)	174.25 (9)	O(1)ReP(1)	87.51 (7)
O(1)ReCl(2)	90.38 (8)	O(2)—Re—P(1)	92.21 (7)
O(2)ReCl(2)	83.88 (7)	Cl(2)—Re— $P(1)$	89.34 (4)
O(1)ReCl(1)	96.59 (8)	Cl(1)—Re—P(1)	91.26 (4)
O(2)—Re—Cl(1)	89.16 (7)	P(2)—Re—P(1)	174.14 (2)
Cl(2)ReCl(1)	173.03 (3)	C(1)	145.3 (2)
O(1)—Re—P(2)	86.66 (7)	O(2) - C(1) - C(3)	111.6 (4)
O(2)ReP(2)	93.53 (7)	O(2) - C(1) - C(2)	110.5 (3)
$Cl(2) \rightarrow Re - P(2)$	90.12 (4)	C(3) - C(1) - C(2)	114.2 (4)

Data collection and cell refinement: CAD-4 Software (Enraf-Nonius, 1989). Cell reduction: SDP (Frenz, 1983). Structure solution and refinement: SHELXS86 (Sheldrick, 1985) and SHELXL93 (Sheldrick, 1993).

We gratefully acknowledge financial support from the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie.

Lists of structure factors, anisotropic displacement parameters, H-atom coordinates and complete geometry, along with a packing diagram, have been deposited with the IUCr (Reference: JZ1019). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Ciani, G. F., D'Alfonso, G., Romiti, P. F., Sironi, A. & Freni, M. (1983). Inorg. Chim. Acta, 72, 29-37.
- Enraf-Nonius (1989). CAD-4 Software. Version 5. Enraf-Nonius, Delft, The Netherlands.
- Frenz, B. A. (1983). Enraf-Nonius Structure Determination Package. SDP User's Guide. Version of 6 January 1983. Enraf-Nonius, Delft, The Netherlands.
- Graziani, R., Casellato, U., Rossi, R. & Marchi, A. (1985). J. Crystallogr. Spectrosc. Res. 15, 573-579.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Lebuis, A.-M. & Beauchamp, A. L. (1993). Can. J. Chem. 71, 441-449.
- Lebuis, A.-M., Roux, C. & Beauchamp, A. L. (1993). Acta Cryst. 49, 33-36.
- Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of Crystal Structures. Univ. of Göttingen, Germany.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. Univ. of Göttingen, Germany.

Acta Cryst. (1995). C51, 1080-1082

Bis(diethylenetriamine-N'-acetato)-di-µhydroxo-dicobalt(III) Perchlorate

MING-QIN CHEN AND JIE LIU

Research Center of Analysis and Measurement, Fudan University, Shanghai 200433, People's Republic of China

ZONG-WAN MAO, QIN-WEI HANG AND WEN-XIA TANG*

Coordination Chemistry State Key Laboratory, Coordination Chemistry Institute, Nanjing University, Nanjing 210008, People's Republic of China

(Received 1 February 1994; accepted 21 November 1994)

Abstract

The complex cation of the title compound, bis[bis-(2-aminoethyl)aminoacetato]-di- μ -hydroxo-dicobalt(III), [Co₂(C₆H₁₄N₃O₂)₂(μ -OH)₂](ClO₄)₂, has a dinuclear structure, with two OH bridges. Each Co atom is octahedrally surrounded by a bis(2-aminoethyl)aminoacetate tripodal structure and two OH groups. In the crystal structure, intermolecular O—H···O hydrogen bonds form infinite chains of molecules, which significantly stabilizes the dinuclear structure; the Co···Co distance is 2.863 (1) Å.

Comment

The crystal and molecular structure and also the properties of metal-amino acid complexes are of continu-

© 1995 International Union of Crystallography Printed in Great Britain – all rights reserved ing interest to both coordination chemists and molecular biologists. In some cases, these compounds provide adequate model systems for metalloproteins and metalloenzymes (Freeman, 1973). Diethylenetriamine-N'-acetic acid (dtmaH) is a synthetic amino acid having a tripodal structure and studies of its complexes with metal ions (Cu, Zn, Ni) have been helpful in understanding the spectroscopic properties of Cu,Znsuperoxide dismutase and the magnetic properties of μ -carboxylate complexes (Mao, Yu, Chen, Han, Sui & Tang, 1993; Mao, Fu, Hang, Tang & Yu, 1993). In this paper, the structure of the complex [(dtma)Co(μ -OH)₂Co(dtma)](ClO₄)₂, (I), is reported.

The crystal structure consists of dimeric cations and perchlorate anions. The complex cation has an inversion centre located at the middle of the dimer. The coordination of Co^{III} is roughly octahedral and the bridging unit, Co(OH)Co(OH), is strictly planar with O—Co—O and Co—O—Co angles of 82.43 (8) and 97.57 (8)°, respectively. The Co···Co distance is 2.863 (1) Å and the Co—O distances are 1.902 (3) and 1.904 (2) Å. These bond lengths agree well with corresponding distances in [(edda)Co(OH)₂Co(en)₂]²⁺ (edda is ethylenediaminediacetate and en is ethylenediamine) (Okamoto, Hidaka, Ama & Yasui, 1991). The fragments N1 N4 O7 O7', N4 N5 O8 O7' and N1 N5 O7 O8 are nearly

Fig. 1. Displacement ellipsoid representation (ORTEP; Johnson, 1965) of the title cation with the atomic numbering scheme. Ellipsoids are plotted at the 50% probability level.